// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license./*! pako 2.0.4 https://github.com/nodeca/pako @license (MIT AND Zlib) */// (C) 1995-2013 Jean-loup Gailly and Mark Adler// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin//// This software is provided 'as-is', without any express or implied// warranty. In no event will the authors be held liable for any damages// arising from the use of this software.//// Permission is granted to anyone to use this software for any purpose,// including commercial applications, and to alter it and redistribute it// freely, subject to the following restrictions://// 1. The origin of this software must not be misrepresented; you must not// claim that you wrote the original software. If you use this software// in a product, an acknowledgment in the product documentation would be// appreciated but is not required.// 2. Altered source versions must be plainly marked as such, and must not be// misrepresented as being the original software.// 3. This notice may not be removed or altered from any source distribution.
// deno-lint-ignore-file
/* eslint-disable space-unary-ops */
/* Public constants ==========================================================*//* ===========================================================================*/
//const Z_FILTERED = 1;//const Z_HUFFMAN_ONLY = 2;//const Z_RLE = 3;const Z_FIXED$1 = 4;//const Z_DEFAULT_STRATEGY = 0;
/* Possible values of the data_type field (though see inflate()) */const Z_BINARY = 0;const Z_TEXT = 1;//const Z_ASCII = 1; // = Z_TEXTconst Z_UNKNOWN$1 = 2;
/*============================================================================*/
function zero$1(buf) { let len = buf.length; while (--len >= 0) buf[len] = 0;}
// From zutil.h
const STORED_BLOCK = 0;const STATIC_TREES = 1;const DYN_TREES = 2;/* The three kinds of block type */
const MIN_MATCH$1 = 3;const MAX_MATCH$1 = 258;/* The minimum and maximum match lengths */
// From deflate.h/* =========================================================================== * Internal compression state. */const LENGTH_CODES$1 = 29;/* number of length codes, not counting the special END_BLOCK code */
const LITERALS$1 = 256;/* number of literal bytes 0..255 */
const L_CODES$1 = LITERALS$1 + 1 + LENGTH_CODES$1;/* number of Literal or Length codes, including the END_BLOCK code */
const D_CODES$1 = 30;/* number of distance codes */
const BL_CODES$1 = 19;/* number of codes used to transfer the bit lengths */
const HEAP_SIZE$1 = 2 * L_CODES$1 + 1;/* maximum heap size */
const MAX_BITS$1 = 15;/* All codes must not exceed MAX_BITS bits */
const Buf_size = 16;/* size of bit buffer in bi_buf */
/* =========================================================================== * Constants */const MAX_BL_BITS = 7;/* Bit length codes must not exceed MAX_BL_BITS bits */
const END_BLOCK = 256;/* end of block literal code */
const REP_3_6 = 16;/* repeat previous bit length 3-6 times (2 bits of repeat count) */
const REPZ_3_10 = 17;/* repeat a zero length 3-10 times (3 bits of repeat count) */
const REPZ_11_138 = 18;/* repeat a zero length 11-138 times (7 bits of repeat count) */
/* eslint-disable comma-spacing,array-bracket-spacing */const extra_lbits = /* extra bits for each length code */ new Uint8Array([ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, ]);const extra_dbits = /* extra bits for each distance code */ new Uint8Array([ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, ]);const extra_blbits = /* extra bits for each bit length code */ new Uint8Array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7]);const bl_order = new Uint8Array([ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15,]);/* eslint-enable comma-spacing,array-bracket-spacing */
/* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. *//* =========================================================================== * Local data. These are initialized only once. */// We pre-fill arrays with 0 to avoid uninitialized gaps
const DIST_CODE_LEN = 512; /* see definition of array dist_code below */
// !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1const static_ltree = new Array((L_CODES$1 + 2) * 2);zero$1(static_ltree);/* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */const static_dtree = new Array(D_CODES$1 * 2);zero$1(static_dtree);/* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */const _dist_code = new Array(DIST_CODE_LEN);zero$1(_dist_code);/* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */const _length_code = new Array(MAX_MATCH$1 - MIN_MATCH$1 + 1);zero$1(_length_code);/* length code for each normalized match length (0 == MIN_MATCH) */
const base_length = new Array(LENGTH_CODES$1);zero$1(base_length);/* First normalized length for each code (0 = MIN_MATCH) */
const base_dist = new Array(D_CODES$1);zero$1(base_dist);/* First normalized distance for each code (0 = distance of 1) */
function StaticTreeDesc( static_tree, extra_bits, extra_base, elems, max_length,) { this.static_tree = static_tree; /* static tree or NULL */ this.extra_bits = extra_bits; /* extra bits for each code or NULL */ this.extra_base = extra_base; /* base index for extra_bits */ this.elems = elems; /* max number of elements in the tree */ this.max_length = max_length; /* max bit length for the codes */ // show if `static_tree` has data or dummy - needed for monomorphic objects this.has_stree = static_tree && static_tree.length;}
let static_l_desc;let static_d_desc;let static_bl_desc;
function TreeDesc(dyn_tree, stat_desc) { this.dyn_tree = dyn_tree; /* the dynamic tree */ this.max_code = 0; /* largest code with non zero frequency */ this.stat_desc = stat_desc; /* the corresponding static tree */}
const d_code = (dist) => { return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];};
/* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */const put_short = (s, w) => { // put_byte(s, (uch)((w) & 0xff)); // put_byte(s, (uch)((ush)(w) >> 8)); s.pending_buf[s.pending++] = (w) & 0xff; s.pending_buf[s.pending++] = (w >>> 8) & 0xff;};
/* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */const send_bits = (s, value, length) => { if (s.bi_valid > (Buf_size - length)) { s.bi_buf |= (value << s.bi_valid) & 0xffff; put_short(s, s.bi_buf); s.bi_buf = value >> (Buf_size - s.bi_valid); s.bi_valid += length - Buf_size; } else { s.bi_buf |= (value << s.bi_valid) & 0xffff; s.bi_valid += length; }};
const send_code = (s, c, tree) => { send_bits(s, tree[c * 2], /*.Code*/ tree[c * 2 + 1] /*.Len*/);};
/* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */const bi_reverse = (code, len) => { let res = 0; do { res |= code & 1; code >>>= 1; res <<= 1; } while (--len > 0); return res >>> 1;};
/* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */const bi_flush = (s) => { if (s.bi_valid === 16) { put_short(s, s.bi_buf); s.bi_buf = 0; s.bi_valid = 0; } else if (s.bi_valid >= 8) { s.pending_buf[s.pending++] = s.bi_buf & 0xff; s.bi_buf >>= 8; s.bi_valid -= 8; }};
/* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */const gen_bitlen = (s, desc) => // deflate_state *s;// tree_desc *desc; /* the tree descriptor */{ const tree = desc.dyn_tree; const max_code = desc.max_code; const stree = desc.stat_desc.static_tree; const has_stree = desc.stat_desc.has_stree; const extra = desc.stat_desc.extra_bits; const base = desc.stat_desc.extra_base; const max_length = desc.stat_desc.max_length; let h; /* heap index */ let n, m; /* iterate over the tree elements */ let bits; /* bit length */ let xbits; /* extra bits */ let f; /* frequency */ let overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS$1; bits++) { s.bl_count[bits] = 0; } /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s.heap[s.heap_max] * 2 + 1] /*.Len*/ = 0; /* root of the heap */ for (h = s.heap_max + 1; h < HEAP_SIZE$1; h++) { n = s.heap[h]; bits = tree[tree[n * 2 + 1] /*.Dad*/ * 2 + 1] /*.Len*/ + 1; if (bits > max_length) { bits = max_length; overflow++; } tree[n * 2 + 1] /*.Len*/ = bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s.bl_count[bits]++; xbits = 0; if (n >= base) { xbits = extra[n - base]; } f = tree[n * 2] /*.Freq*/; s.opt_len += f * (bits + xbits); if (has_stree) { s.static_len += f * (stree[n * 2 + 1] /*.Len*/ + xbits); } } if (overflow === 0) return; // Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length - 1; while (s.bl_count[bits] === 0) bits--; s.bl_count[bits]--; /* move one leaf down the tree */ s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */ s.bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits !== 0; bits--) { n = s.bl_count[bits]; while (n !== 0) { m = s.heap[--h]; if (m > max_code) continue; if (tree[m * 2 + 1] /*.Len*/ !== bits) { // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s.opt_len += (bits - tree[m * 2 + 1] /*.Len*/) * tree[m * 2] /*.Freq*/; tree[m * 2 + 1] /*.Len*/ = bits; } n--; } }};
/* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */const gen_codes = (tree, max_code, bl_count) => // ct_data *tree; /* the tree to decorate */// int max_code; /* largest code with non zero frequency */// ushf *bl_count; /* number of codes at each bit length */{ const next_code = new Array( MAX_BITS$1 + 1, ); /* next code value for each bit length */ let code = 0; /* running code value */ let bits; /* bit index */ let n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS$1; bits++) { next_code[bits] = code = (code + bl_count[bits - 1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, // "inconsistent bit counts"); //Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); for (n = 0; n <= max_code; n++) { let len = tree[n * 2 + 1] /*.Len*/; if (len === 0) continue; /* Now reverse the bits */ tree[n * 2] /*.Code*/ = bi_reverse(next_code[len]++, len); //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", // n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); }};
/* =========================================================================== * Initialize the various 'constant' tables. */const tr_static_init = () => { let n; /* iterates over tree elements */ let bits; /* bit counter */ let length; /* length value */ let code; /* code value */ let dist; /* distance index */ const bl_count = new Array(MAX_BITS$1 + 1); /* number of codes at each bit length for an optimal tree */ // do check in _tr_init() //if (static_init_done) return; /* For some embedded targets, global variables are not initialized: */ /*#ifdef NO_INIT_GLOBAL_POINTERS static_l_desc.static_tree = static_ltree; static_l_desc.extra_bits = extra_lbits; static_d_desc.static_tree = static_dtree; static_d_desc.extra_bits = extra_dbits; static_bl_desc.extra_bits = extra_blbits;#endif*/
/* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES$1 - 1; code++) { base_length[code] = length; for (n = 0; n < (1 << extra_lbits[code]); n++) { _length_code[length++] = code; } } //Assert (length == 256, "tr_static_init: length != 256"); /* Note that the length 255 (match length 258) can be represented * in two different ways: code 284 + 5 bits or code 285, so we * overwrite length_code[255] to use the best encoding: */ _length_code[length - 1] = code; /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ dist = 0; for (code = 0; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1 << extra_dbits[code]); n++) { _dist_code[dist++] = code; } } //Assert (dist == 256, "tr_static_init: dist != 256"); dist >>= 7; /* from now on, all distances are divided by 128 */ for (; code < D_CODES$1; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { _dist_code[256 + dist++] = code; } } //Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS$1; bits++) { bl_count[bits] = 0; } n = 0; while (n <= 143) { static_ltree[n * 2 + 1] /*.Len*/ = 8; n++; bl_count[8]++; } while (n <= 255) { static_ltree[n * 2 + 1] /*.Len*/ = 9; n++; bl_count[9]++; } while (n <= 279) { static_ltree[n * 2 + 1] /*.Len*/ = 7; n++; bl_count[7]++; } while (n <= 287) { static_ltree[n * 2 + 1] /*.Len*/ = 8; n++; bl_count[8]++; } /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes(static_ltree, L_CODES$1 + 1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES$1; n++) { static_dtree[n * 2 + 1] /*.Len*/ = 5; static_dtree[n * 2] /*.Code*/ = bi_reverse(n, 5); } // Now data ready and we can init static trees static_l_desc = new StaticTreeDesc( static_ltree, extra_lbits, LITERALS$1 + 1, L_CODES$1, MAX_BITS$1, ); static_d_desc = new StaticTreeDesc( static_dtree, extra_dbits, 0, D_CODES$1, MAX_BITS$1, ); static_bl_desc = new StaticTreeDesc( new Array(0), extra_blbits, 0, BL_CODES$1, MAX_BL_BITS, ); //static_init_done = true;};
/* =========================================================================== * Initialize a new block. */const init_block = (s) => { let n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES$1; n++) s.dyn_ltree[n * 2] /*.Freq*/ = 0; for (n = 0; n < D_CODES$1; n++) s.dyn_dtree[n * 2] /*.Freq*/ = 0; for (n = 0; n < BL_CODES$1; n++) s.bl_tree[n * 2] /*.Freq*/ = 0; s.dyn_ltree[END_BLOCK * 2] /*.Freq*/ = 1; s.opt_len = s.static_len = 0; s.last_lit = s.matches = 0;};
/* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */const bi_windup = (s) => { if (s.bi_valid > 8) { put_short(s, s.bi_buf); } else if (s.bi_valid > 0) { //put_byte(s, (Byte)s->bi_buf); s.pending_buf[s.pending++] = s.bi_buf; } s.bi_buf = 0; s.bi_valid = 0;};
/* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */const copy_block = (s, buf, len, header) => //DeflateState *s;//charf *buf; /* the input data *///unsigned len; /* its length *///int header; /* true if block header must be written */{ bi_windup(s); /* align on byte boundary */ if (header) { put_short(s, len); put_short(s, ~len); } // while (len--) { // put_byte(s, *buf++); // } s.pending_buf.set(s.window.subarray(buf, buf + len), s.pending); s.pending += len;};
/* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */const smaller = (tree, n, m, depth) => { const _n2 = n * 2; const _m2 = m * 2; return (tree[_n2] /*.Freq*/ < tree[_m2] /*.Freq*/ || (tree[_n2] /*.Freq*/ === tree[_m2] /*.Freq*/ && depth[n] <= depth[m]));};
/* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */const pqdownheap = (s, tree, k) => // deflate_state *s;// ct_data *tree; /* the tree to restore */// int k; /* node to move down */{ const v = s.heap[k]; let j = k << 1; /* left son of k */ while (j <= s.heap_len) { /* Set j to the smallest of the two sons: */ if ( j < s.heap_len && smaller(tree, s.heap[j + 1], s.heap[j], s.depth) ) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s.heap[j], s.depth)) break; /* Exchange v with the smallest son */ s.heap[k] = s.heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s.heap[k] = v;};
// inlined manually// const SMALLEST = 1;
/* =========================================================================== * Send the block data compressed using the given Huffman trees */const compress_block = (s, ltree, dtree) => // deflate_state *s;// const ct_data *ltree; /* literal tree */// const ct_data *dtree; /* distance tree */{ let dist; /* distance of matched string */ let lc; /* match length or unmatched char (if dist == 0) */ let lx = 0; /* running index in l_buf */ let code; /* the code to send */ let extra; /* number of extra bits to send */ if (s.last_lit !== 0) { do { dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]); lc = s.pending_buf[s.l_buf + lx]; lx++; if (dist === 0) { send_code(s, lc, ltree); /* send a literal byte */ //Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code + LITERALS$1 + 1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra !== 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); //Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra !== 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, // "pendingBuf overflow"); } while (lx < s.last_lit); } send_code(s, END_BLOCK, ltree);};
/* =========================================================================== * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length * and corresponding code. The length opt_len is updated; static_len is * also updated if stree is not null. The field max_code is set. */const build_tree = (s, desc) => // deflate_state *s;// tree_desc *desc; /* the tree descriptor */{ const tree = desc.dyn_tree; const stree = desc.stat_desc.static_tree; const has_stree = desc.stat_desc.has_stree; const elems = desc.stat_desc.elems; let n, m; /* iterate over heap elements */ let max_code = -1; /* largest code with non zero frequency */ let node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s.heap_len = 0; s.heap_max = HEAP_SIZE$1; for (n = 0; n < elems; n++) { if (tree[n * 2] /*.Freq*/ !== 0) { s.heap[++s.heap_len] = max_code = n; s.depth[n] = 0; } else { tree[n * 2 + 1] /*.Len*/ = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s.heap_len < 2) { node = s.heap[++s.heap_len] = max_code < 2 ? ++max_code : 0; tree[node * 2] /*.Freq*/ = 1; s.depth[node] = 0; s.opt_len--; if (has_stree) { s.static_len -= stree[node * 2 + 1] /*.Len*/; } /* node is 0 or 1 so it does not have extra bits */ } desc.max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s.heap_len >> 1 /*int /2*/; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { //pqremove(s, tree, n); /* n = node of least frequency */ /*** pqremove ***/ n = s.heap[1 /*SMALLEST*/]; s.heap[1 /*SMALLEST*/] = s.heap[s.heap_len--]; pqdownheap(s, tree, 1 /*SMALLEST*/); /***/ m = s.heap[1 /*SMALLEST*/]; /* m = node of next least frequency */ s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */ s.heap[--s.heap_max] = m; /* Create a new node father of n and m */ tree[node * 2] /*.Freq*/ = tree[n * 2] /*.Freq*/ + tree[m * 2] /*.Freq*/; s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1; tree[n * 2 + 1] /*.Dad*/ = tree[m * 2 + 1] /*.Dad*/ = node; /* and insert the new node in the heap */ s.heap[1 /*SMALLEST*/] = node++; pqdownheap(s, tree, 1 /*SMALLEST*/); } while (s.heap_len >= 2); s.heap[--s.heap_max] = s.heap[1 /*SMALLEST*/]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, desc); /* The field len is now set, we can generate the bit codes */ gen_codes(tree, max_code, s.bl_count);};
/* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */const scan_tree = (s, tree, max_code) => // deflate_state *s;// ct_data *tree; /* the tree to be scanned */// int max_code; /* and its largest code of non zero frequency */{ let n; /* iterates over all tree elements */ let prevlen = -1; /* last emitted length */ let curlen; /* length of current code */ let nextlen = tree[0 * 2 + 1] /*.Len*/; /* length of next code */ let count = 0; /* repeat count of the current code */ let max_count = 7; /* max repeat count */ let min_count = 4; /* min repeat count */ if (nextlen === 0) { max_count = 138; min_count = 3; } tree[(max_code + 1) * 2 + 1] /*.Len*/ = 0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1] /*.Len*/; if (++count < max_count && curlen === nextlen) { continue; } else if (count < min_count) { s.bl_tree[curlen * 2] /*.Freq*/ += count; } else if (curlen !== 0) { if (curlen !== prevlen) s.bl_tree[curlen * 2] /*.Freq*/++; s.bl_tree[REP_3_6 * 2] /*.Freq*/++; } else if (count <= 10) { s.bl_tree[REPZ_3_10 * 2] /*.Freq*/++; } else { s.bl_tree[REPZ_11_138 * 2] /*.Freq*/++; } count = 0; prevlen = curlen; if (nextlen === 0) { max_count = 138; min_count = 3; } else if (curlen === nextlen) { max_count = 6; min_count = 3; } else { max_count = 7; min_count = 4; } }};
/* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */const send_tree = (s, tree, max_code) => // deflate_state *s;// ct_data *tree; /* the tree to be scanned */// int max_code; /* and its largest code of non zero frequency */{ let n; /* iterates over all tree elements */ let prevlen = -1; /* last emitted length */ let curlen; /* length of current code */ let nextlen = tree[0 * 2 + 1] /*.Len*/; /* length of next code */ let count = 0; /* repeat count of the current code */ let max_count = 7; /* max repeat count */ let min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen === 0) { max_count = 138; min_count = 3; } for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1] /*.Len*/; if (++count < max_count && curlen === nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s.bl_tree); } while (--count !== 0); } else if (curlen !== 0) { if (curlen !== prevlen) { send_code(s, curlen, s.bl_tree); count--; } //Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s.bl_tree); send_bits(s, count - 3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s.bl_tree); send_bits(s, count - 3, 3); } else { send_code(s, REPZ_11_138, s.bl_tree); send_bits(s, count - 11, 7); } count = 0; prevlen = curlen; if (nextlen === 0) { max_count = 138; min_count = 3; } else if (curlen === nextlen) { max_count = 6; min_count = 3; } else { max_count = 7; min_count = 4; } }};
/* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */const build_bl_tree = (s) => { let max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, s.dyn_ltree, s.l_desc.max_code); scan_tree(s, s.dyn_dtree, s.d_desc.max_code); /* Build the bit length tree: */ build_tree(s, s.bl_desc); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES$1 - 1; max_blindex >= 3; max_blindex--) { if (s.bl_tree[bl_order[max_blindex] * 2 + 1] /*.Len*/ !== 0) { break; } } /* Update opt_len to include the bit length tree and counts */ s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", // s->opt_len, s->static_len)); return max_blindex;};
/* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */const send_all_trees = (s, lcodes, dcodes, blcodes) => // deflate_state *s;// int lcodes, dcodes, blcodes; /* number of codes for each tree */{ let rank; /* index in bl_order */ //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, // "too many codes"); //Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes - 1, 5); send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { //Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1], /*.Len*/ 3); } //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */ //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */ //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));};
/* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */const detect_data_type = (s) => { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ let black_mask = 0xf3ffc07f; let n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>>= 1) { if ((black_mask & 1) && (s.dyn_ltree[n * 2] /*.Freq*/ !== 0)) { return Z_BINARY; } } /* Check for textual ("white-listed") bytes. */ if ( s.dyn_ltree[9 * 2] /*.Freq*/ !== 0 || s.dyn_ltree[10 * 2] /*.Freq*/ !== 0 || s.dyn_ltree[13 * 2] /*.Freq*/ !== 0 ) { return Z_TEXT; } for (n = 32; n < LITERALS$1; n++) { if (s.dyn_ltree[n * 2] /*.Freq*/ !== 0) { return Z_TEXT; } } /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY;};
let static_init_done = false;
/* =========================================================================== * Initialize the tree data structures for a new zlib stream. */const _tr_init$1 = (s) => { if (!static_init_done) { tr_static_init(); static_init_done = true; } s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc); s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc); s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc); s.bi_buf = 0; s.bi_valid = 0; /* Initialize the first block of the first file: */ init_block(s);};
/* =========================================================================== * Send a stored block */const _tr_stored_block$1 = (s, buf, stored_len, last) => //DeflateState *s;//charf *buf; /* input block *///ulg stored_len; /* length of input block *///int last; /* one if this is the last block for a file */{ send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */ copy_block(s, buf, stored_len, true); /* with header */};
/* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */const _tr_align$1 = (s) => { send_bits(s, STATIC_TREES << 1, 3); send_code(s, END_BLOCK, static_ltree); bi_flush(s);};
/* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */const _tr_flush_block$1 = (s, buf, stored_len, last) => //DeflateState *s;//charf *buf; /* input block, or NULL if too old *///ulg stored_len; /* length of input block *///int last; /* one if this is the last block for a file */{ let opt_lenb, static_lenb; /* opt_len and static_len in bytes */ let max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s.level > 0) { /* Check if the file is binary or text */ if (s.strm.data_type === Z_UNKNOWN$1) { s.strm.data_type = detect_data_type(s); } /* Construct the literal and distance trees */ build_tree(s, s.l_desc); // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, // s->static_len)); build_tree(s, s.d_desc); // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, // s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s.opt_len + 3 + 7) >>> 3; static_lenb = (s.static_len + 3 + 7) >>> 3; // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, // s->last_lit)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; } else { // Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) { /* 4: two words for the lengths */ /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block$1(s, buf, stored_len, last); } else if (s.strategy === Z_FIXED$1 || static_lenb === opt_lenb) { send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3); compress_block(s, static_ltree, static_dtree); } else { send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3); send_all_trees( s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1, ); compress_block(s, s.dyn_ltree, s.dyn_dtree); } // Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); } // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, // s->compressed_len-7*last));};
/* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */const _tr_tally$1 = (s, dist, lc) => // deflate_state *s;// unsigned dist; /* distance of matched string */// unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */{ //let out_length, in_length, dcode; s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff; s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff; s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff; s.last_lit++; if (dist === 0) { /* lc is the unmatched char */ s.dyn_ltree[lc * 2] /*.Freq*/++; } else { s.matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ //Assert((ush)dist < (ush)MAX_DIST(s) && // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && // (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s.dyn_ltree[(_length_code[lc] + LITERALS$1 + 1) * 2] /*.Freq*/++; s.dyn_dtree[d_code(dist) * 2] /*.Freq*/++; } // (!) This block is disabled in zlib defaults, // don't enable it for binary compatibility //#ifdef TRUNCATE_BLOCK // /* Try to guess if it is profitable to stop the current block here */ // if ((s.last_lit & 0x1fff) === 0 && s.level > 2) { // /* Compute an upper bound for the compressed length */ // out_length = s.last_lit*8; // in_length = s.strstart - s.block_start; // // for (dcode = 0; dcode < D_CODES; dcode++) { // out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]); // } // out_length >>>= 3; // //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", // // s->last_lit, in_length, out_length, // // 100L - out_length*100L/in_length)); // if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) { // return true; // } // } //#endif return (s.last_lit === s.lit_bufsize - 1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */};
var _tr_init_1 = _tr_init$1;var _tr_stored_block_1 = _tr_stored_block$1;var _tr_flush_block_1 = _tr_flush_block$1;var _tr_tally_1 = _tr_tally$1;var _tr_align_1 = _tr_align$1;
var trees = { _tr_init: _tr_init_1, _tr_stored_block: _tr_stored_block_1, _tr_flush_block: _tr_flush_block_1, _tr_tally: _tr_tally_1, _tr_align: _tr_align_1,};
// Note: adler32 takes 12% for level 0 and 2% for level 6.// It isn't worth it to make additional optimizations as in original.// Small size is preferable.
// (C) 1995-2013 Jean-loup Gailly and Mark Adler// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin//// This software is provided 'as-is', without any express or implied// warranty. In no event will the authors be held liable for any damages// arising from the use of this software.//// Permission is granted to anyone to use this software for any purpose,// including commercial applications, and to alter it and redistribute it// freely, subject to the following restrictions://// 1. The origin of this software must not be misrepresented; you must not// claim that you wrote the original software. If you use this software// in a product, an acknowledgment in the product documentation would be// appreciated but is not required.// 2. Altered source versions must be plainly marked as such, and must not be// misrepresented as being the original software.// 3. This notice may not be removed or altered from any source distribution.
const adler32 = (adler, buf, len, pos) => { let s1 = (adler & 0xffff) | 0, s2 = ((adler >>> 16) & 0xffff) | 0, n = 0; while (len !== 0) { // Set limit ~ twice less than 5552, to keep // s2 in 31-bits, because we force signed ints. // in other case %= will fail. n = len > 2000 ? 2000 : len; len -= n; do { s1 = (s1 + buf[pos++]) | 0; s2 = (s2 + s1) | 0; } while (--n); s1 %= 65521; s2 %= 65521; } return (s1 | (s2 << 16)) | 0;};
var adler32_1 = adler32;
// Note: we can't get significant speed boost here.// So write code to minimize size - no pregenerated tables// and array tools dependencies.
// (C) 1995-2013 Jean-loup Gailly and Mark Adler// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin//// This software is provided 'as-is', without any express or implied// warranty. In no event will the authors be held liable for any damages// arising from the use of this software.//// Permission is granted to anyone to use this software for any purpose,// including commercial applications, and to alter it and redistribute it// freely, subject to the following restrictions://// 1. The origin of this software must not be misrepresented; you must not// claim that you wrote the original software. If you use this software// in a product, an acknowledgment in the product documentation would be// appreciated but is not required.// 2. Altered source versions must be plainly marked as such, and must not be// misrepresented as being the original software.// 3. This notice may not be removed or altered from any source distribution.
// Use ordinary array, since untyped makes no boost hereconst makeTable = () => { let c, table = []; for (var n = 0; n < 256; n++) { c = n; for (var k = 0; k < 8; k++) { c = (c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1); } table[n] = c; } return table;};
// Create table on load. Just 255 signed longs. Not a problem.const crcTable = new Uint32Array(makeTable());
const crc32 = (crc, buf, len, pos) => { const t = crcTable; const end = pos + len; crc ^= -1; for (let i = pos; i < end; i++) { crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF]; } return (crc ^ (-1)); // >>> 0;};
var crc32_1 = crc32;
// (C) 1995-2013 Jean-loup Gailly and Mark Adler// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin//// This software is provided 'as-is', without any express or implied// warranty. In no event will the authors be held liable for any damages// arising from the use of this software.//// Permission is granted to anyone to use this software for any purpose,// including commercial applications, and to alter it and redistribute it// freely, subject to the following restrictions://// 1. The origin of this software must not be misrepresented; you must not// claim that you wrote the original software. If you use this software// in a product, an acknowledgment in the product documentation would be// appreciated but is not required.// 2. Altered source versions must be plainly marked as such, and must not be// misrepresented as being the original software.// 3. This notice may not be removed or altered from any source distribution.
var messages = { 2: "need dictionary", /* Z_NEED_DICT 2 */ 1: "stream end", /* Z_STREAM_END 1 */ 0: "", /* Z_OK 0 */ "-1": "file error", /* Z_ERRNO (-1) */ "-2": "stream error", /* Z_STREAM_ERROR (-2) */ "-3": "data error", /* Z_DATA_ERROR (-3) */ "-4": "insufficient memory", /* Z_MEM_ERROR (-4) */ "-5": "buffer error", /* Z_BUF_ERROR (-5) */ "-6": "incompatible version", /* Z_VERSION_ERROR (-6) */};
// (C) 1995-2013 Jean-loup Gailly and Mark Adler// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin//// This software is provided 'as-is', without any express or implied// warranty. In no event will the authors be held liable for any damages// arising from the use of this software.//// Permission is granted to anyone to use this software for any purpose,// including commercial applications, and to alter it and redistribute it// freely, subject to the following restrictions://// 1. The origin of this software must not be misrepresented; you must not// claim that you wrote the original software. If you use this software// in a product, an acknowledgment in the product documentation would be// appreciated but is not required.// 2. Altered source versions must be plainly marked as such, and must not be// misrepresented as being the original software.// 3. This notice may not be removed or altered from any source distribution.
var constants$2 = { /* Allowed flush values; see deflate() and inflate() below for details */ Z_NO_FLUSH: 0, Z_PARTIAL_FLUSH: 1, Z_SYNC_FLUSH: 2, Z_FULL_FLUSH: 3, Z_FINISH: 4, Z_BLOCK: 5, Z_TREES: 6, /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ Z_OK: 0, Z_STREAM_END: 1, Z_NEED_DICT: 2, Z_ERRNO: -1, Z_STREAM_ERROR: -2, Z_DATA_ERROR: -3, Z_MEM_ERROR: -4, Z_BUF_ERROR: -5, Z_VERSION_ERROR: -6, /* compression levels */ Z_NO_COMPRESSION: 0, Z_BEST_SPEED: 1, Z_BEST_COMPRESSION: 9, Z_DEFAULT_COMPRESSION: -1, Z_FILTERED: 1, Z_HUFFMAN_ONLY: 2, Z_RLE: 3, Z_FIXED: 4, Z_DEFAULT_STRATEGY: 0, /* Possible values of the data_type field (though see inflate()) */ Z_BINARY: 0, Z_TEXT: 1, //Z_ASCII: 1, // = Z_TEXT (deprecated) Z_UNKNOWN: 2, /* The deflate compression method */ Z_DEFLATED: 8, //Z_NULL: null // Use -1 or null inline, depending on var type};
// (C) 1995-2013 Jean-loup Gailly and Mark Adler// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin//// This software is provided 'as-is', without any express or implied// warranty. In no event will the authors be held liable for any damages// arising from the use of this software.//// Permission is granted to anyone to use this software for any purpose,// including commercial applications, and to alter it and redistribute it// freely, subject to the following restrictions://// 1. The origin of this software must not be misrepresented; you must not// claim that you wrote the original software. If you use this software// in a product, an acknowledgment in the product documentation would be// appreciated but is not required.// 2. Altered source versions must be plainly marked as such, and must not be// misrepresented as being the original software.// 3. This notice may not be removed or altered from any source distribution.
const { _tr_init, _tr_stored_block, _tr_flush_block, _tr_tally, _tr_align } = trees;/* Public constants ==========================================================*//* ===========================================================================*/
const { Z_NO_FLUSH: Z_NO_FLUSH$2, Z_PARTIAL_FLUSH, Z_FULL_FLUSH: Z_FULL_FLUSH$1, Z_FINISH: Z_FINISH$3, Z_BLOCK: Z_BLOCK$1, Z_OK: Z_OK$3, Z_STREAM_END: Z_STREAM_END$3, Z_STREAM_ERROR: Z_STREAM_ERROR$2, Z_DATA_ERROR: Z_DATA_ERROR$2, Z_BUF_ERROR: Z_BUF_ERROR$1, Z_DEFAULT_COMPRESSION: Z_DEFAULT_COMPRESSION$1, Z_FILTERED, Z_HUFFMAN_ONLY, Z_RLE, Z_FIXED, Z_DEFAULT_STRATEGY: Z_DEFAULT_STRATEGY$1, Z_UNKNOWN, Z_DEFLATED: Z_DEFLATED$2,} = constants$2;
/*============================================================================*/
const MAX_MEM_LEVEL = 9;/* Maximum value for memLevel in deflateInit2 */const MAX_WBITS$1 = 15;/* 32K LZ77 window */const DEF_MEM_LEVEL = 8;
const LENGTH_CODES = 29;/* number of length codes, not counting the special END_BLOCK code */const LITERALS = 256;/* number of literal bytes 0..255 */const L_CODES = LITERALS + 1 + LENGTH_CODES;/* number of Literal or Length codes, including the END_BLOCK code */const D_CODES = 30;/* number of distance codes */const BL_CODES = 19;/* number of codes used to transfer the bit lengths */const HEAP_SIZE = 2 * L_CODES + 1;/* maximum heap size */const MAX_BITS = 15;/* All codes must not exceed MAX_BITS bits */
const MIN_MATCH = 3;const MAX_MATCH = 258;const MIN_LOOKAHEAD = MAX_MATCH + MIN_MATCH + 1;
const PRESET_DICT = 0x20;
const INIT_STATE = 42;const EXTRA_STATE = 69;const NAME_STATE = 73;const COMMENT_STATE = 91;const HCRC_STATE = 103;const BUSY_STATE = 113;const FINISH_STATE = 666;
const BS_NEED_MORE = 1; /* block not completed, need more input or more output */const BS_BLOCK_DONE = 2; /* block flush performed */const BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */const BS_FINISH_DONE = 4; /* finish done, accept no more input or output */
const OS_CODE = 0x03; // Unix :) . Don't detect, use this default.
const err = (strm, errorCode) => { strm.msg = messages[errorCode]; return errorCode;};
const rank = (f) => { return ((f) << 1) - ((f) > 4 ? 9 : 0);};
const zero = (buf) => { let len = buf.length; while (--len >= 0) buf[len] = 0;};
/* eslint-disable new-cap */let HASH_ZLIB = (s, prev, data) => ((prev << s.hash_shift) ^ data) & s.hash_mask;// This hash causes less collisions, https://github.com/nodeca/pako/issues/135// But breaks binary compatibility//let HASH_FAST = (s, prev, data) => ((prev << 8) + (prev >> 8) + (data << 4)) & s.hash_mask;let HASH = HASH_ZLIB;
/* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->output buffer and copying into it. * (See also read_buf()). */const flush_pending = (strm) => { const s = strm.state; //_tr_flush_bits(s); let len = s.pending; if (len > strm.avail_out) { len = strm.avail_out; } if (len === 0) return; strm.output.set( s.pending_buf.subarray(s.pending_out, s.pending_out + len), strm.next_out, ); strm.next_out += len; s.pending_out += len; strm.total_out += len; strm.avail_out -= len; s.pending -= len; if (s.pending === 0) { s.pending_out = 0; }};
const flush_block_only = (s, last) => { _tr_flush_block( s, s.block_start >= 0 ? s.block_start : -1, s.strstart - s.block_start, last, ); s.block_start = s.strstart; flush_pending(s.strm);};
const put_byte = (s, b) => { s.pending_buf[s.pending++] = b;};
/* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */const putShortMSB = (s, b) => { // put_byte(s, (Byte)(b >> 8)); // put_byte(s, (Byte)(b & 0xff)); s.pending_buf[s.pending++] = (b >>> 8) & 0xff; s.pending_buf[s.pending++] = b & 0xff;};
/* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->input buffer and copying from it. * (See also flush_pending()). */const read_buf = (strm, buf, start, size) => { let len = strm.avail_in; if (len > size) len = size; if (len === 0) return 0; strm.avail_in -= len; // zmemcpy(buf, strm->next_in, len); buf.set(strm.input.subarray(strm.next_in, strm.next_in + len), start); if (strm.state.wrap === 1) { strm.adler = adler32_1(strm.adler, buf, len, start); } else if (strm.state.wrap === 2) { strm.adler = crc32_1(strm.adler, buf, len, start); } strm.next_in += len; strm.total_in += len; return len;};
/* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */const longest_match = (s, cur_match) => { let chain_length = s.max_chain_length; /* max hash chain length */ let scan = s.strstart; /* current string */ let match; /* matched string */ let len; /* length of current match */ let best_len = s.prev_length; /* best match length so far */ let nice_match = s.nice_match; /* stop if match long enough */ const limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ? s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0 /*NIL*/; const _win = s.window; // shortcut const wmask = s.w_mask; const prev = s.prev; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ const strend = s.strstart + MAX_MATCH; let scan_end1 = _win[scan + best_len - 1]; let scan_end = _win[scan + best_len]; /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s.prev_length >= s.good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if (nice_match > s.lookahead) nice_match = s.lookahead; // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { // Assert(cur_match < s->strstart, "no future"); match = cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2. Note that the checks below * for insufficient lookahead only occur occasionally for performance * reasons. Therefore uninitialized memory will be accessed, and * conditional jumps will be made that depend on those values. * However the length of the match is limited to the lookahead, so * the output of deflate is not affected by the uninitialized values. */ if ( _win[match + best_len] !== scan_end || _win[match + best_len - 1] !== scan_end1 || _win[match] !== _win[scan] || _win[++match] !== _win[scan + 1] ) { continue; } /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2; match++; // Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { /*jshint noempty:false*/ } while ( _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && scan < strend ); // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (strend - scan); scan = strend - MAX_MATCH; if (len > best_len) { s.match_start = cur_match; best_len = len; if (len >= nice_match) { break; } scan_end1 = _win[scan + best_len - 1]; scan_end = _win[scan + best_len]; } } while ( (cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0 ); if (best_len <= s.lookahead) { return best_len; } return s.lookahead;};
/* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */const fill_window = (s) => { const _w_size = s.w_size; let p, n, m, more, str; //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); do { more = s.window_size - s.lookahead - s.strstart; // JS ints have 32 bit, block below not needed /* Deal with !@#$% 64K limit: */ //if (sizeof(int) <= 2) { // if (more == 0 && s->strstart == 0 && s->lookahead == 0) { // more = wsize; // // } else if (more == (unsigned)(-1)) { // /* Very unlikely, but possible on 16 bit machine if // * strstart == 0 && lookahead == 1 (input done a byte at time) // */ // more--; // } //} /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) { s.window.set(s.window.subarray(_w_size, _w_size + _w_size), 0); s.match_start -= _w_size; s.strstart -= _w_size; /* we now have strstart >= MAX_DIST */ s.block_start -= _w_size; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ n = s.hash_size; p = n; do { m = s.head[--p]; s.head[p] = m >= _w_size ? m - _w_size : 0; } while (--n); n = _w_size; p = n; do { m = s.prev[--p]; s.prev[p] = m >= _w_size ? m - _w_size : 0; /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); more += _w_size; } if (s.strm.avail_in === 0) { break; } /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ //Assert(more >= 2, "more < 2"); n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more); s.lookahead += n; /* Initialize the hash value now that we have some input: */ if (s.lookahead + s.insert >= MIN_MATCH) { str = s.strstart - s.insert; s.ins_h = s.window[str]; /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */ s.ins_h = HASH(s, s.ins_h, s.window[str + 1]); //#if MIN_MATCH != 3 // Call update_hash() MIN_MATCH-3 more times //#endif while (s.insert) { /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ s.ins_h = HASH(s, s.ins_h, s.window[str + MIN_MATCH - 1]); s.prev[str & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = str; str++; s.insert--; if (s.lookahead + s.insert < MIN_MATCH) { break; } } } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0); /* If the WIN_INIT bytes after the end of the current data have never been * written, then zero those bytes in order to avoid memory check reports of * the use of uninitialized (or uninitialised as Julian writes) bytes by * the longest match routines. Update the high water mark for the next * time through here. WIN_INIT is set to MAX_MATCH since the longest match * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. */ // if (s.high_water < s.window_size) { // const curr = s.strstart + s.lookahead; // let init = 0; // // if (s.high_water < curr) { // /* Previous high water mark below current data -- zero WIN_INIT // * bytes or up to end of window, whichever is less. // */ // init = s.window_size - curr; // if (init > WIN_INIT) // init = WIN_INIT; // zmemzero(s->window + curr, (unsigned)init); // s->high_water = curr + init; // } // else if (s->high_water < (ulg)curr + WIN_INIT) { // /* High water mark at or above current data, but below current data // * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up // * to end of window, whichever is less. // */ // init = (ulg)curr + WIN_INIT - s->high_water; // if (init > s->window_size - s->high_water) // init = s->window_size - s->high_water; // zmemzero(s->window + s->high_water, (unsigned)init); // s->high_water += init; // } // } // // Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, // "not enough room for search");};
/* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */const deflate_stored = (s, flush) => { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited * to pending_buf_size, and each stored block has a 5 byte header: */ let max_block_size = 0xffff; if (max_block_size > s.pending_buf_size - 5) { max_block_size = s.pending_buf_size - 5; } /* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s.lookahead <= 1) { //Assert(s->strstart < s->w_size+MAX_DIST(s) || // s->block_start >= (long)s->w_size, "slide too late"); // if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) || // s.block_start >= s.w_size)) { // throw new Error("slide too late"); // } fill_window(s); if (s.lookahead === 0 && flush === Z_NO_FLUSH$2) { return BS_NEED_MORE; } if (s.lookahead === 0) { break; } /* flush the current block */ } //Assert(s->block_start >= 0L, "block gone"); // if (s.block_start < 0) throw new Error("block gone"); s.strstart += s.lookahead; s.lookahead = 0; /* Emit a stored block if pending_buf will be full: */ const max_start = s.block_start + max_block_size; if (s.strstart === 0 || s.strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s.lookahead = s.strstart - max_start; s.strstart = max_start; /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } /* Flush if we may have to slide, otherwise block_start may become * negative and the data will be gone: */ if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } } s.insert = 0; if (flush === Z_FINISH$3) { /*** FLUSH_BLOCK(s, 1); ***/ flush_block_only(s, true); if (s.strm.avail_out === 0) { return BS_FINISH_STARTED; } /***/ return BS_FINISH_DONE; } if (s.strstart > s.block_start) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } return BS_NEED_MORE;};
/* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */const deflate_fast = (s, flush) => { let hash_head; /* head of the hash chain */ let bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s.lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH$2) { return BS_NEED_MORE; } if (s.lookahead === 0) { break; /* flush the current block */ } } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = 0 /*NIL*/; if (s.lookahead >= MIN_MATCH) { /*** INSERT_STRING(s, s.strstart, hash_head); ***/ s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]); hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = s.strstart; /***/ } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if ( hash_head !== 0 /*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD)) ) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match