noble-secp256k1
secp256k1, an elliptic curve that could be used for assymetric encryption, ECDH key agreement protocol and ECDSA signature scheme.
Algorithmically resistant to timing attacks.
This library belongs to noble crypto
noble-crypto â high-security, easily auditable set of contained cryptographic libraries and tools.
- No dependencies, one small file
- Easily auditable TypeScript/JS code
- Uses es2019 bigint. Supported in Chrome, Firefox, node 10+
- All releases are signed and trusted
- Check out all libraries: secp256k1, ed25519, bls12-381, ripemd160, secretbox-aes-gcm
Usage
npm install noble-secp256k1
import * as secp256k1 from "noble-secp256k1";
// You can also pass BigInt:
// const PRIVATE_KEY = 0xa665a45920422f9d417e4867efn;
const PRIVATE_KEY = Uint8Array.from([
0xa6, 0x65, 0xa4, 0x59, 0x20, 0x42, 0x2f,
0x9d, 0x41, 0x7e, 0x48, 0x67, 0xef
]);
const MESSAGE_HASH = "9c1185a5c5e9fc54612808977ee8f548b2258d31";
const publicKey = secp256k1.getPublicKey(PRIVATE_KEY);
const signature = secp256k1.sign(MESSAGE_HASH, PRIVATE_KEY);
const isMessageSigned = secp256k1.verify(signature, MESSAGE_HASH, publicKey);
API
getPublicKey(privateKey)
getSharedSecret(privateKeyA, publicKeyB)
sign(hash, privateKey)
verify(signature, hash)
recoverPublicKey(hash, signature, recovery)
- Helpers
getPublicKey(privateKey)
function getPublicKey(privateKey: Uint8Array, isCompressed?: false): Uint8Array;
function getPublicKey(privateKey: string, isCompressed?: false): string;
function getPublicKey(privateKey: bigint): Uint8Array;
privateKey
will be used to generate public key.
Public key is generated by doing scalar multiplication of a base Point(x, y) by a fixed
integer. The result is another Point(x, y)
which we will by default encode to hex Uint8Array.
isCompressed
(default is false
) determines whether the output should contain y
coordinate of the point.
To get Point instance, use Point.fromPrivateKey(privateKey)
.
getSharedSecret(privateKeyA, publicKeyB)
function getSharedSecret(privateKeyA: Uint8Array | string | bigint, publicKeyB: string | Uint8Array | Point): Uint8Array;
Computes ECDH (Elliptic Curve Diffie-Hellman) shared secret between a private key and a different public key.
To get Point instance, use Point.fromHex(publicKeyB).multiply(privateKeyA)
.
sign(hash, privateKey)
function sign(hash: Uint8Array, privateKey: Uint8Array | bigint, opts?: Options): Uint8Array;
function sign(hash: string, privateKey: string | bigint, opts?: Options): string;
hash: Uint8Array | string
- message hash which would be signedprivateKey: Uint8Array | string | bigint
- private key which will sign the hashoptions?: Options
- optional object related to signature value and formatoptions?.k: number | bigint
- random seed. Default is one fromcrypto.getRandomValues()
. Must be cryptographically secure, which meansMath.random()
wonât work.options?.recovered: boolean
- determines whether the recovered bit should be included in the result. In this case, the result would be an array of two items.options?.canonical: boolean
- determines whether a signatures
should be sorted by half prime order- Returns DER encoded ECDSA signature, as hex uint8a / string and recovered bit if
options.recovered == true
.
verify(signature, hash)
function verify(signature: Uint8Array | string | SignResult, hash: Uint8Array | string): boolean
signature: Uint8Array | string | { r: bigint, s: bigint }
- object returned by thesign
functionhash: string | Uint8Array
- message hash that needs to be verifiedpublicKey: string | Point
- e.g. that was generated fromprivateKey
bygetPublicKey
- Returns
boolean
:true
ifsignature == hash
; otherwisefalse
recoverPublicKey(hash, signature, recovery)
function recoverPublicKey(hash: Hex, signature: Signature, recovery: number | bigint): Point | undefined
hash: Uint8Array | string
- message hash which would be signedsignature: Uint8Array | string | { r: bigint, s: bigint }
- object returned by thesign
functionrecovery: number | bigint
- recovery bit returned bysign
withrecovered
option Public key is generated by doing scalar multiplication of a base Point(x, y) by a fixed integer. The result is anotherPoint(x, y)
which we will by default encode to hex Uint8Array. If signature is invalid - function will returnundefined
as result.
Point methods
Helpers
// đ˝p
secp256k1.P // 2 ^ 256 - 2 ^ 32 - 977
// Prime order
secp256k1.PRIME_ORDER // 2 ^ 256 - 432420386565659656852420866394968145599
// Base point
secp256k1.BASE_POINT // new secp256k1.Point(x, y) where
// x = 55066263022277343669578718895168534326250603453777594175500187360389116729240n
// y = 32670510020758816978083085130507043184471273380659243275938904335757337482424n;
// Elliptic curve point
secp256k1.Point {
constructor(x: bigint, y: bigint);
// Compressed elliptic curve point representation
static fromHex(hex: Uint8Array | string);
static fromPrivateKey(privateKey: Uint8Array | string | number | bigint);
static fromSignature(
hash: Hex,
signature: Signature,
recovery: number | bigint
): Point | undefined {
toHex(): string;
add(other: Point): Point;
// Constant-time scalar multiplication.
multiply(scalar: bigint | Uint8Array): Point;
}
secp256k1.SignResult {
constructor(r: bigint, s: bigint);
// DER encoded ECDSA signature
static fromHex(hex: Uint8Array | string);
toHex()
}
There is an option to have 2x speed-up by precomputing powers of two. Use generate-precomputes
script & include the result in index.ts.
Security
Noble is production-ready & secure. Our goal is to have it audited by a good security expert.
Weâre using built-in JS BigInt
, which is âunsuitable for use in cryptographyâ as per official spec. This means that the lib is potentially vulnerable to timing attacks. But:
- JIT-compiler and Garbage Collector make âconstant timeâ extremely hard to achieve in a scripting language.
- Which means any other JS library doesnât use constant-time bigints. Including bn.js or anything else. Even statically typed Rust, a language without GC, makes it harder to achieve constant-time for some cases.
- If your goal is absolute security, donât use any JS lib â including bindings to native ones. Use low-level libraries & languages.
- We however consider infrastructure attacks like rogue NPM modules very important; thatâs why itâs crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and youâll be downloading rootkits with every
npm install
. Our goal is to minimize this attack vector. - Weâve hardened implementation of koblitz curve multiplication to be algorithmically timing-resistant.
License
MIT (c) Paul Miller (https://paulmillr.com), see LICENSE file.