f_o_vec
this is a small library that handles vectors in javascript, at least as good as it can be done UwU
instanciate vectors
var o = new O_vec4();
f_assert_equals(o.toString(),'(0,0,0,0)');
var o = new O_vec4(1);
f_assert_equals(o.toString(),'(1,1,1,1)');
var o = new O_vec4(1,2);
f_assert_equals(o.toString(),'(1,2,2,2)');
var o = new O_vec4(1,2,3);
f_assert_equals(o.toString(),'(1,2,3,3)');
var o = new O_vec4(1,2,3, 4);
f_assert_equals(o.toString(),'(1,2,3,4)');
access vector components
var o = new O_vec4(2,3,4,5);
f_assert_equals(o.x, 2)
f_assert_equals(o.n_x, 2)
f_assert_equals(o[0], 2)
f_assert_equals(o.y, 3)
f_assert_equals(o.n_y, 3)
f_assert_equals(o[1], 3)
f_assert_equals(o.z, 4)
f_assert_equals(o.n_z, 4)
f_assert_equals(o[2], 4)
f_assert_equals(o.w, 5)
f_assert_equals(o.n_w, 5)
f_assert_equals(o[3], 5)
access components as array of numbers a_n_comp
f_assert_equals(o.a_n_comp, [2,3,4,5])
//set components
var o = new O_vec4(0);
f_assert_equals(o.x+=1, 1)
f_assert_equals(o.n_x+=1, 2)
f_assert_equals(o[0]+=1, 3)
Vector swizzling
var o = new O_vec4(2,3,4,5);
f_assert_equals(o.xxxx.toString(), '(2,2,2,2)')
f_assert_equals(o.xxxz.toString(), '(2,2,2,4)')
f_assert_equals(o.xxxw.toString(), '(2,2,2,5)')
f_assert_equals(o.xyxy.toString(), '(2,3,2,3)')
f_assert_equals(o.wzyx.toString(), '(5,4,3,2)')
vector operations
every operation results in a new vector but can be done directly on the current vector by calling the operation with a suffix of ‘eq’ a+b => a.add(b) a+=b => a.addeq(b)
add
var o_vec = new O_vec4(1,2,3,4);
f_assert_equals(
o_vec
.add(3,-2, 10, -10)
.toString(),
'(4,0,13,-6)'
)
o_vec.addeq(3,-2, 10, -10)
f_assert_equals(
o_vec
.toString(),
'(4,0,13,-6)'
)
sub
var o_vec = new O_vec4(1,2,3,4);
f_assert_equals(
o_vec
.sub(3,-2, 10, -10)
.toString(),
'(-2,4,-7,14)'
)
o_vec.subeq(3,-2, 10, -10)
f_assert_equals(
o_vec
.toString(),
'(-2,4,-7,14)'
)
mul
var o_vec = new O_vec4(1,2,3,4);
f_assert_equals(
o_vec
.mul(3,-2, 10, -10)
.toString(),
'(3,-4,30,-40)'
)
o_vec.muleq(3,-2, 10, -10)
f_assert_equals(
o_vec
.toString(),
'(3,-4,30,-40)'
)
div
var o_vec = new O_vec4(1,-2, 9, -12);
f_assert_equals(
o_vec
.div(1,2,3,4)
.toString(),
'(1,-1,3,-3)'
)
o_vec.diveq(1,2,3,4)
f_assert_equals(
o_vec.toString(),
'(1,-1,3,-3)'
)
// md: ## other manipulations
length
f_assert_equals(new O_vec2(3,4).length(),5)
f_assert_equals(new O_vec3(8,11,16).length(),21)
unfortunately there is no pythagorean quituple
f_assert_equals(new O_vec4(2,3,6,7).length(),9.899494936611665)
normalize
f_assert_equals(new O_vec3(1,2,3).normalize().toString(),`(0.2672612419124244,0.5345224838248488,0.8017837257372732)`)
var o = new O_vec3(1,2,3);
o.normalizeeq();
f_assert_equals(o.toString(),`(0.2672612419124244,0.5345224838248488,0.8017837257372732)`)
fract (get part after decimal point)
let o = new O_vec2(12.8291214, 0.5534)
o.fracteq()
f_assert_equals(o.toString(),`(0.8291214,0.5534)`)
components operated on each other
var n = new O_vec3(1,2,3).compsadd()
f_assert_equals(n,6)//`1+2+3
var n = new O_vec3(1,2,3).compssub()
f_assert_equals(n,-6)//`-1-2-3
var n = new O_vec3(1,2,3).compsmul()
f_assert_equals(n,6)//`1*2*3
var n = new O_vec3(1,2,3).compsdiv()
f_assert_equals(n,0.16666666666666666)//`(1/2)/3
dot / dot product
let n = new O_vec2(2,3).dot(4,5)
f_assert_equals(n,23)//`(2*4+3*5)=>(8+15)=>(23)`)
//dot product with multiple vectors
let n2 = new O_vec2(2,3)
.mul(4,5)
.mul(10,20)
.compsadd()
f_assert_equals(n2,380)//`(2*4*10+3*5*20)=>(8*10+15*20)=>(80+300)=>(380)`)
dot / dot product
var o = new O_vec3(2,3,4).cross(5,6,7)
f_assert_equals(o.toString(),'(-3,6,-3)')
var o = new O_vec3(2,3,4);
o.crosseq(5,6,7)
f_assert_equals(o.toString(),'(-3,6,-3)')
// var o = new O_vec3(2,3,4);
// o.crosseq(1)
// f_assert_equals(o.toString(),'(-1,2,-1)')
sangle (smallest angle) between two vectors using the (dot/length*length) formula
var n_ang = new O_vec3(2,3,4).sangle(-5,6,-7)
f_assert_equals(n_ang,1.9327554742236706)
var n_ang_deg = new O_vec3(2,3,4).sangle_deg(-5,6,-7)
f_assert_equals(n_ang_deg,110.73873150382231)
the horizontal angle between two vectors
// f_assert_equals(f_o_vec2(0,0).hangle(0,1),Math.PI);
f_assert_equals(new O_vec2(0,0).hangle(0,1),((Math.PI*2)/4)*2);
f_assert_equals(new O_vec2(0,0).hangle(1,0),-((Math.PI*2)/4)*1);
f_assert_equals(new O_vec2(0,0).hangle(0,-1),-((Math.PI*2)/4)*0);
f_assert_equals(new O_vec2(0,0).hangle(-1,0),((Math.PI*2)/4)*1);
convert/parse (using parseInt) a vector or some of its properties to an integer
f_assert_equals(
new O_vec2(1.12341234, 2.12341234).comps_to_int().toString(),
new O_vec2(1,2).toString()
);
f_assert_equals(
new O_vec2(1.12341234, 2.12341234).to_int().toString(),
new O_vec2(1,2).toString()
);
f_assert_equals(
new O_vec2(-23.123, -31.1234).to_int().toString(),
new O_vec2(-23,-31).toString()
);
f_assert_equals(
new O_vec2(-23.123, -31.1234).to_int('n_x').toString(),
new O_vec2(-23,-31.1234).toString()
);
f_assert_equals(
new O_vec4(1.2,3.4,5.6,7.8).to_int('x', 'w').toString(),
new O_vec4(1,3.4, 5.6, 7).toString()
);
// eq functions,
let o1 = new O_vec4(1.2,3.4,5.6,7.8);
o1.to_inteq();
f_assert_equals(
o1.toString(),
new O_vec4(1,3,5,7).toString()
);
convert a vector to a one dimensional index
//lets say we have a 4x3 matrix
// 0 1 2 3
//------------------< X
// 0 | 0, 1, 2, 3
// 1 | 4, 5, 6, 7 // X:Y 1:2 would be index 9
// 2 | 8, 9,10,11
// ^
// Y
f_assert_equals(
new O_vec2(1.1234,2.9234).to_index(
new O_vec2(4,3)
),
9
);
convert a vector to a one dimensional index
//lets say we have a 4x3 (o_scl) matrix
// 0 1 2 3
//------------------< X
// 0 | 0, 1, 2, 3
// 1 | 4, 5, 6, 7
// 2 | 8, 9,10,11 // index 1 would be X:Y 3:2
// ^
// Y
let o_scl = new O_vec2(4,3);
f_assert_equals(
o_scl.from_index(11),
new O_vec2(3,2)// this is the resulting translation o_trn
);