import { BigNumber } from "https://deno.land/x/web3@v0.11.1/types/bignumber.d.ts";
import { BigNumber } from "https://deno.land/x/web3@v0.11.1/types/bignumber.d.ts";
Constructors
Returns a new instance of a BigNumber object with value n
, where n
is a numeric value in
the specified base
, or base 10 if base
is omitted or is null
or undefined
.
x = new BigNumber(123.4567) // '123.4567'
// 'new' is optional
y = BigNumber(x) // '123.4567'
If n
is a base 10 value it can be in normal (fixed-point) or exponential notation.
Values in other bases must be in normal notation. Values in any base can have fraction digits,
i.e. digits after the decimal point.
new BigNumber(43210) // '43210'
new BigNumber('4.321e+4') // '43210'
new BigNumber('-735.0918e-430') // '-7.350918e-428'
new BigNumber('123412421.234324', 5) // '607236.557696'
Signed 0
, signed Infinity
and NaN
are supported.
new BigNumber('-Infinity') // '-Infinity'
new BigNumber(NaN) // 'NaN'
new BigNumber(-0) // '0'
new BigNumber('.5') // '0.5'
new BigNumber('+2') // '2'
String values in hexadecimal literal form, e.g. '0xff'
, are valid, as are string values with
the octal and binary prefixs '0o'
and '0b'
. String values in octal literal form without the
prefix will be interpreted as decimals, e.g. '011'
is interpreted as 11, not 9.
new BigNumber(-10110100.1, 2) // '-180.5'
new BigNumber('-0b10110100.1') // '-180.5'
new BigNumber('ff.8', 16) // '255.5'
new BigNumber('0xff.8') // '255.5'
If a base is specified, n
is rounded according to the current DECIMAL_PLACES
and
ROUNDING_MODE
settings. This includes base 10, so don't include a base
parameter for decimal
values unless this behaviour is desired.
BigNumber.config({ DECIMAL_PLACES: 5 })
new BigNumber(1.23456789) // '1.23456789'
new BigNumber(1.23456789, 10) // '1.23457'
An error is thrown if base
is invalid.
There is no limit to the number of digits of a value of type string (other than that of
JavaScript's maximum array size). See RANGE
to set the maximum and minimum possible exponent
value of a BigNumber.
new BigNumber('5032485723458348569331745.33434346346912144534543')
new BigNumber('4.321e10000000')
BigNumber NaN
is returned if n
is invalid (unless BigNumber.DEBUG
is true
, see below).
new BigNumber('.1*') // 'NaN'
new BigNumber('blurgh') // 'NaN'
new BigNumber(9, 2) // 'NaN'
To aid in debugging, if BigNumber.DEBUG
is true
then an error will be thrown on an
invalid n
. An error will also be thrown if n
is of type number with more than 15
significant digits, as calling toString
or valueOf
on these numbers may not result in the
intended value.
console.log(823456789123456.3) // 823456789123456.2
new BigNumber(823456789123456.3) // '823456789123456.2'
BigNumber.DEBUG = true
// 'Error: Number has more than 15 significant digits'
new BigNumber(823456789123456.3)
// 'Error: Not a base 2 number'
new BigNumber(9, 2)
A BigNumber can also be created from an object literal.
Use isBigNumber
to check that it is well-formed.
new BigNumber({ s: 1, e: 2, c: [ 777, 12300000000000 ], _isBigNumber: true }) // '777.123'
Properties
The coefficient of the value of this BigNumber, an array of base 1e14 integer numbers, or null.
The exponent of the value of this BigNumber, an integer number, -1000000000 to 1000000000, or null.
Methods
Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this BigNumber.
The return value is always exact and unrounded.
x = new BigNumber(-0.8)
x.abs() // '0.8'
Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this BigNumber.
The return value is always exact and unrounded.
x = new BigNumber(-0.8)
x.absoluteValue() // '0.8'
Returns |
---|
1 | If the value of this BigNumber is greater than the value of `n`
-1 | If the value of this BigNumber is less than the value of n
0 | If this BigNumber and n
have the same value
null
| If the value of either this BigNumber or n
is NaN
x = new BigNumber(Infinity)
y = new BigNumber(5)
x.comparedTo(y) // 1
x.comparedTo(x.minus(1)) // 0
y.comparedTo(NaN) // null
y.comparedTo('110', 2) // -1
Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
roundingMode
to a maximum of decimalPlaces
decimal places.
If decimalPlaces
is omitted, or is null
or undefined
, the return value is the number of
decimal places of the value of this BigNumber, or null
if the value of this BigNumber is
±Infinity
or NaN
.
If roundingMode
is omitted, or is null
or undefined
, ROUNDING_MODE
is used.
Throws if decimalPlaces
or roundingMode
is invalid.
x = new BigNumber(1234.56)
x.decimalPlaces() // 2
x.decimalPlaces(1) // '1234.6'
x.decimalPlaces(2) // '1234.56'
x.decimalPlaces(10) // '1234.56'
x.decimalPlaces(0, 1) // '1234'
x.decimalPlaces(0, 6) // '1235'
x.decimalPlaces(1, 1) // '1234.5'
x.decimalPlaces(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
x // '1234.56'
y = new BigNumber('9.9e-101')
y.decimalPlaces() // 102
Returns a BigNumber whose value is the value of this BigNumber divided by n
, rounded
according to the current DECIMAL_PLACES
and ROUNDING_MODE
settings.
x = new BigNumber(355)
y = new BigNumber(113)
x.div(y) // '3.14159292035398230088'
x.div(5) // '71'
x.div(47, 16) // '5'
Returns a BigNumber whose value is the value of this BigNumber divided by n
, rounded
according to the current DECIMAL_PLACES
and ROUNDING_MODE
settings.
x = new BigNumber(355)
y = new BigNumber(113)
x.dividedBy(y) // '3.14159292035398230088'
x.dividedBy(5) // '71'
x.dividedBy(47, 16) // '5'
Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
n
.
x = new BigNumber(5)
y = new BigNumber(3)
x.dividedToIntegerBy(y) // '1'
x.dividedToIntegerBy(0.7) // '7'
x.dividedToIntegerBy('0.f', 16) // '5'
Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
roundingMode
to a maximum of decimalPlaces
decimal places.
If decimalPlaces
is omitted, or is null
or undefined
, the return value is the number of
decimal places of the value of this BigNumber, or null
if the value of this BigNumber is
±Infinity
or NaN
.
If roundingMode
is omitted, or is null
or undefined
, ROUNDING_MODE
is used.
Throws if decimalPlaces
or roundingMode
is invalid.
x = new BigNumber(1234.56)
x.dp() // 2
x.dp(1) // '1234.6'
x.dp(2) // '1234.56'
x.dp(10) // '1234.56'
x.dp(0, 1) // '1234'
x.dp(0, 6) // '1235'
x.dp(1, 1) // '1234.5'
x.dp(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
x // '1234.56'
y = new BigNumber('9.9e-101')
y.dp() // 102
Returns true
if the value of this BigNumber is equal to the value of n
, otherwise returns
false
.
As with JavaScript, NaN
does not equal NaN
.
0 === 1e-324 // true
x = new BigNumber(0)
x.eq('1e-324') // false
BigNumber(-0).eq(x) // true ( -0 === 0 )
BigNumber(255).eq('ff', 16) // true
y = new BigNumber(NaN)
y.eq(NaN) // false
Returns a BigNumber whose value is the value of this BigNumber exponentiated by n
, i.e.
raised to the power n
, and optionally modulo a modulus m
.
If n
is negative the result is rounded according to the current DECIMAL_PLACES
and
ROUNDING_MODE
settings.
As the number of digits of the result of the power operation can grow so large so quickly,
e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is
limited to the value of the POW_PRECISION
setting (unless a modulus m
is specified).
By default POW_PRECISION
is set to 0. This means that an unlimited number of significant
digits will be calculated, and that the method's performance will decrease dramatically for
larger exponents.
If m
is specified and the value of m
, n
and this BigNumber are integers and n
is
positive, then a fast modular exponentiation algorithm is used, otherwise the operation will
be performed as x.exponentiatedBy(n).modulo(m)
with a POW_PRECISION
of 0.
Throws if n
is not an integer.
Math.pow(0.7, 2) // 0.48999999999999994
x = new BigNumber(0.7)
x.exponentiatedBy(2) // '0.49'
BigNumber(3).exponentiatedBy(-2) // '0.11111111111111111111'
Returns true
if the value of this BigNumber is greater than the value of n
, otherwise
returns false
.
0.1 > (0.3 - 0 // true
x = new BigNumber(0.1)
x.gt(BigNumber(0.3).minus(0.2)) // false
BigNumber(0).gt(x) // false
BigNumber(11, 3).gt(11.1, 2) // true
Returns true
if the value of this BigNumber is greater than or equal to the value of n
,
otherwise returns false
.
(0.3 - 0.2) >= 0.1 // false
x = new BigNumber(0.3).minus(0.2)
x.gte(0.1) // true
BigNumber(1).gte(x) // true
BigNumber(10, 18).gte('i', 36) // true
Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
n
.
x = new BigNumber(5)
y = new BigNumber(3)
x.idiv(y) // '1'
x.idiv(0.7) // '7'
x.idiv('0.f', 16) // '5'
Returns a BigNumber whose value is the value of this BigNumber rounded to an integer using
rounding mode rm
.
If rm
is omitted, or is null
or undefined
, ROUNDING_MODE
is used.
Throws if rm
is invalid.
x = new BigNumber(123.456)
x.integerValue() // '123'
x.integerValue(BigNumber.ROUND_CEIL) // '124'
y = new BigNumber(-12.7)
y.integerValue() // '-13'
x.integerValue(BigNumber.ROUND_DOWN) // '-12'
Returns true
if the value of this BigNumber is equal to the value of n
, otherwise returns
false
.
As with JavaScript, NaN
does not equal NaN
.
0 === 1e-324 // true
x = new BigNumber(0)
x.isEqualTo('1e-324') // false
BigNumber(-0).isEqualTo(x) // true ( -0 === 0 )
BigNumber(255).isEqualTo('ff', 16) // true
y = new BigNumber(NaN)
y.isEqualTo(NaN) // false
Returns true
if the value of this BigNumber is a finite number, otherwise returns false
.
The only possible non-finite values of a BigNumber are NaN
, Infinity
and -Infinity
.
x = new BigNumber(1)
x.isFinite() // true
y = new BigNumber(Infinity)
y.isFinite() // false
Returns true
if the value of this BigNumber is greater than the value of n
, otherwise
returns false
.
0.1 > (0.3 - 0.2) // true
x = new BigNumber(0.1)
x.isGreaterThan(BigNumber(0.3).minus(0.2)) // false
BigNumber(0).isGreaterThan(x) // false
BigNumber(11, 3).isGreaterThan(11.1, 2) // true
Returns true
if the value of this BigNumber is greater than or equal to the value of n
,
otherwise returns false
.
(0.3 - 0.2) >= 0.1 // false
x = new BigNumber(0.3).minus(0.2)
x.isGreaterThanOrEqualTo(0.1) // true
BigNumber(1).isGreaterThanOrEqualTo(x) // true
BigNumber(10, 18).isGreaterThanOrEqualTo('i', 36) // true
Returns true
if the value of this BigNumber is an integer, otherwise returns false
.
x = new BigNumber(1)
x.isInteger() // true
y = new BigNumber(123.456)
y.isInteger() // false
Returns true
if the value of this BigNumber is less than the value of n
, otherwise returns
false
.
(0.3 - 0.2) < 0.1 // true
x = new BigNumber(0.3).minus(0.2)
x.isLessThan(0.1) // false
BigNumber(0).isLessThan(x) // true
BigNumber(11.1, 2).isLessThan(11, 3) // true
Returns true
if the value of this BigNumber is less than or equal to the value of n
,
otherwise returns false
.
0.1 <= (0.3 - 0.2) // false
x = new BigNumber(0.1)
x.isLessThanOrEqualTo(BigNumber(0.3).minus(0.2)) // true
BigNumber(-1).isLessThanOrEqualTo(x) // true
BigNumber(10, 18).isLessThanOrEqualTo('i', 36) // true
Returns true
if the value of this BigNumber is NaN
, otherwise returns false
.
x = new BigNumber(NaN)
x.isNaN() // true
y = new BigNumber('Infinity')
y.isNaN() // false
Returns true
if the value of this BigNumber is negative, otherwise returns false
.
x = new BigNumber(-0)
x.isNegative() // true
y = new BigNumber(2)
y.isNegative() // false
Returns true
if the value of this BigNumber is positive, otherwise returns false
.
x = new BigNumber(-0)
x.isPositive() // false
y = new BigNumber(2)
y.isPositive() // true
Returns true
if the value of this BigNumber is zero or minus zero, otherwise returns false
.
x = new BigNumber(-0)
x.isZero() // true
Returns true
if the value of this BigNumber is less than the value of n
, otherwise returns
false
.
(0.3 - 0.2) < 0.1 // true
x = new BigNumber(0.3).minus(0.2)
x.lt(0.1) // false
BigNumber(0).lt(x) // true
BigNumber(11.1, 2).lt(11, 3) // true
Returns true
if the value of this BigNumber is less than or equal to the value of n
,
otherwise returns false
.
0.1 <= (0.3 - 0.2) // false
x = new BigNumber(0.1)
x.lte(BigNumber(0.3).minus(0.2)) // true
BigNumber(-1).lte(x) // true
BigNumber(10, 18).lte('i', 36) // true
Returns a BigNumber whose value is the value of this BigNumber minus n
.
The return value is always exact and unrounded.
0.3 - 0.1 // 0.19999999999999998
x = new BigNumber(0.3)
x.minus(0.1) // '0.2'
x.minus(0.6, 20) // '0'
Returns a BigNumber whose value is the value of this BigNumber modulo n
, i.e. the integer
remainder of dividing this BigNumber by n
.
The value returned, and in particular its sign, is dependent on the value of the MODULO_MODE
setting of this BigNumber constructor. If it is 1 (default value), the result will have the
same sign as this BigNumber, and it will match that of Javascript's %
operator (within the
limits of double precision) and BigDecimal's remainder
method.
The return value is always exact and unrounded.
See MODULO_MODE
for a description of the other modulo modes.
1 % 0.9 // 0.09999999999999998
x = new BigNumber(1)
x.mod(0.9) // '0.1'
y = new BigNumber(33)
y.mod('a', 33) // '3'
Returns a BigNumber whose value is the value of this BigNumber modulo n
, i.e. the integer
remainder of dividing this BigNumber by n
.
The value returned, and in particular its sign, is dependent on the value of the MODULO_MODE
setting of this BigNumber constructor. If it is 1 (default value), the result will have the
same sign as this BigNumber, and it will match that of Javascript's %
operator (within the
limits of double precision) and BigDecimal's remainder
method.
The return value is always exact and unrounded.
See MODULO_MODE
for a description of the other modulo modes.
1 % 0.9 // 0.09999999999999998
x = new BigNumber(1)
x.modulo(0.9) // '0.1'
y = new BigNumber(33)
y.modulo('a', 33) // '3'
Returns a BigNumber whose value is the value of this BigNumber multiplied by n
.
The return value is always exact and unrounded.
0.6 * 3 // 1.7999999999999998
x = new BigNumber(0.6)
y = x.multipliedBy(3) // '1.8'
BigNumber('7e+500').multipliedBy(y) // '1.26e+501'
x.multipliedBy('-a', 16) // '-6'
Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by -1.
x = new BigNumber(1.8)
x.negated() // '-1.8'
y = new BigNumber(-1.3)
y.negated() // '1.3'
Returns a BigNumber whose value is the value of this BigNumber plus n
.
The return value is always exact and unrounded.
0.1 + 0.2 // 0.30000000000000004
x = new BigNumber(0.1)
y = x.plus(0.2) // '0.3'
BigNumber(0.7).plus(x).plus(y) // '1.1'
x.plus('0.1', 8) // '0.225'
Returns a BigNumber whose value is the value of this BigNumber exponentiated by n
, i.e.
raised to the power n
, and optionally modulo a modulus m
.
If n
is negative the result is rounded according to the current DECIMAL_PLACES
and
ROUNDING_MODE
settings.
As the number of digits of the result of the power operation can grow so large so quickly,
e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is
limited to the value of the POW_PRECISION
setting (unless a modulus m
is specified).
By default POW_PRECISION
is set to 0. This means that an unlimited number of significant
digits will be calculated, and that the method's performance will decrease dramatically for
larger exponents.
If m
is specified and the value of m
, n
and this BigNumber are integers and n
is
positive, then a fast modular exponentiation algorithm is used, otherwise the operation will
be performed as x.pow(n).modulo(m)
with a POW_PRECISION
of 0.
Throws if n
is not an integer.
Math.pow(0.7, 2) // 0.48999999999999994
x = new BigNumber(0.7)
x.pow(2) // '0.49'
BigNumber(3).pow(-2) // '0.11111111111111111111'
Returns the number of significant digits of the value of this BigNumber, or null
if the value
of this BigNumber is ±Infinity
or NaN
.
If includeZeros
is true then any trailing zeros of the integer part of the value of this
BigNumber are counted as significant digits, otherwise they are not.
Throws if includeZeros
is invalid.
x = new BigNumber(9876.54321)
x.precision() // 9
y = new BigNumber(987000)
y.precision(false) // 3
y.precision(true) // 6
Returns a BigNumber whose value is the value of this BigNumber rounded to a precision of
significantDigits
significant digits using rounding mode roundingMode
.
If roundingMode
is omitted or is null
or undefined
, ROUNDING_MODE
will be used.
Throws if significantDigits
or roundingMode
is invalid.
x = new BigNumber(9876.54321)
x.precision(6) // '9876.54'
x.precision(6, BigNumber.ROUND_UP) // '9876.55'
x.precision(2) // '9900'
x.precision(2, 1) // '9800'
x // '9876.54321'
Returns the number of significant digits of the value of this BigNumber,
or null
if the value of this BigNumber is ±Infinity
or NaN
.
If includeZeros
is true then any trailing zeros of the integer part of
the value of this BigNumber are counted as significant digits, otherwise
they are not.
Throws if includeZeros
is invalid.
x = new BigNumber(9876.54321)
x.sd() // 9
y = new BigNumber(987000)
y.sd(false) // 3
y.sd(true) // 6
Returns a BigNumber whose value is the value of this BigNumber rounded to a precision of
significantDigits
significant digits using rounding mode roundingMode
.
If roundingMode
is omitted or is null
or undefined
, ROUNDING_MODE
will be used.
Throws if significantDigits
or roundingMode
is invalid.
x = new BigNumber(9876.54321)
x.sd(6) // '9876.54'
x.sd(6, BigNumber.ROUND_UP) // '9876.55'
x.sd(2) // '9900'
x.sd(2, 1) // '9800'
x // '9876.54321'
Returns a BigNumber whose value is the value of this BigNumber shifted by n
places.
The shift is of the decimal point, i.e. of powers of ten, and is to the left if n
is negative
or to the right if n
is positive.
The return value is always exact and unrounded.
Throws if n
is invalid.
x = new BigNumber(1.23)
x.shiftedBy(3) // '1230'
x.shiftedBy(-3) // '0.00123'
Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded
according to the current DECIMAL_PLACES
and ROUNDING_MODE
settings.
The return value will be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding.
x = new BigNumber(16)
x.sqrt() // '4'
y = new BigNumber(3)
y.sqrt() // '1.73205080756887729353'
Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded
according to the current DECIMAL_PLACES
and ROUNDING_MODE
settings.
The return value will be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding.
x = new BigNumber(16)
x.squareRoot() // '4'
y = new BigNumber(3)
y.squareRoot() // '1.73205080756887729353'
Returns a BigNumber whose value is the value of this BigNumber multiplied by n
.
The return value is always exact and unrounded.
0.6 * 3 // 1.7999999999999998
x = new BigNumber(0.6)
y = x.times(3) // '1.8'
BigNumber('7e+500').times(y) // '1.26e+501'
x.times('-a', 16) // '-6'
Returns a string representing the value of this BigNumber in exponential notation rounded using
rounding mode roundingMode
to decimalPlaces
decimal places, i.e with one digit before the
decimal point and decimalPlaces
digits after it.
If the value of this BigNumber in exponential notation has fewer than decimalPlaces
fraction
digits, the return value will be appended with zeros accordingly.
If decimalPlaces
is omitted, or is null
or undefined
, the number of digits after the
decimal point defaults to the minimum number of digits necessary to represent the value
exactly.
If roundingMode
is omitted or is null
or undefined
, ROUNDING_MODE
is used.
Throws if decimalPlaces
or roundingMode
is invalid.
x = 45.6
y = new BigNumber(x)
x.toExponential() // '4.56e+1'
y.toExponential() // '4.56e+1'
x.toExponential(0) // '5e+1'
y.toExponential(0) // '5e+1'
x.toExponential(1) // '4.6e+1'
y.toExponential(1) // '4.6e+1'
y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN)
x.toExponential(3) // '4.560e+1'
y.toExponential(3) // '4.560e+1'
Returns a string representing the value of this BigNumber in normal (fixed-point) notation
rounded to decimalPlaces
decimal places using rounding mode roundingMode
.
If the value of this BigNumber in normal notation has fewer than decimalPlaces
fraction
digits, the return value will be appended with zeros accordingly.
Unlike Number.prototype.toFixed
, which returns exponential notation if a number is greater or
equal to 10**21, this method will always return normal notation.
If decimalPlaces
is omitted or is null
or undefined
, the return value will be unrounded
and in normal notation. This is also unlike Number.prototype.toFixed
, which returns the value
to zero decimal places. It is useful when normal notation is required and the current
EXPONENTIAL_AT
setting causes toString
to return exponential notation.
If roundingMode
is omitted or is null
or undefined
, ROUNDING_MODE
is used.
Throws if decimalPlaces
or roundingMode
is invalid.
x = 3.456
y = new BigNumber(x)
x.toFixed() // '3'
y.toFixed() // '3.456'
y.toFixed(0) // '3'
x.toFixed(2) // '3.46'
y.toFixed(2) // '3.46'
y.toFixed(2, 1) // '3.45' (ROUND_DOWN)
x.toFixed(5) // '3.45600'
y.toFixed(5) // '3.45600'
Returns a string representing the value of this BigNumber in normal (fixed-point) notation
rounded to decimalPlaces
decimal places using rounding mode roundingMode
, and formatted
according to the properties of the format
or FORMAT
object.
The formatting object may contain some or all of the properties shown in the examples below.
If decimalPlaces
is omitted or is null
or undefined
, then the return value is not
rounded to a fixed number of decimal places.
If roundingMode
is omitted or is null
or undefined
, ROUNDING_MODE
is used.
If format
is omitted or is null
or undefined
, FORMAT
is used.
Throws if decimalPlaces
, roundingMode
, or format
is invalid.
fmt = {
decimalSeparator: '.',
groupSeparator: ',',
groupSize: 3,
secondaryGroupSize: 0,
fractionGroupSeparator: ' ',
fractionGroupSize: 0
}
x = new BigNumber('123456789.123456789')
// Set the global formatting options
BigNumber.config({ FORMAT: fmt })
x.toFormat() // '123,456,789.123456789'
x.toFormat(3) // '123,456,789.123'
// If a reference to the object assigned to FORMAT has been retained,
// the format properties can be changed directly
fmt.groupSeparator = ' '
fmt.fractionGroupSize = 5
x.toFormat() // '123 456 789.12345 6789'
// Alternatively, pass the formatting options as an argument
fmt = {
decimalSeparator: ',',
groupSeparator: '.',
groupSize: 3,
secondaryGroupSize: 2
}
x.toFormat() // '123 456 789.12345 6789'
x.toFormat(fmt) // '12.34.56.789,123456789'
x.toFormat(2, fmt) // '12.34.56.789,12'
x.toFormat(3, BigNumber.ROUND_UP, fmt) // '12.34.56.789,124'
Returns an array of two BigNumbers representing the value of this BigNumber as a simple
fraction with an integer numerator and an integer denominator.
The denominator will be a positive non-zero value less than or equal to max_denominator
.
If a maximum denominator, max_denominator
, is not specified, or is null
or undefined
, the
denominator will be the lowest value necessary to represent the number exactly.
Throws if max_denominator
is invalid.
x = new BigNumber(1.75)
x.toFraction() // '7, 4'
pi = new BigNumber('3.14159265358')
pi.toFraction() // '157079632679,50000000000'
pi.toFraction(100000) // '312689, 99532'
pi.toFraction(10000) // '355, 113'
pi.toFraction(100) // '311, 99'
pi.toFraction(10) // '22, 7'
pi.toFraction(1) // '3, 1'
As valueOf
.
Returns the value of this BigNumber as a JavaScript primitive number.
Using the unary plus operator gives the same result.
x = new BigNumber(456.789)
x.toNumber() // 456.789
+x // 456.789
y = new BigNumber('45987349857634085409857349856430985')
y.toNumber() // 4.598734985763409e+34
z = new BigNumber(-0)
1 / z.toNumber() // -Infinity
1 / +z // -Infinity
Returns a string representing the value of this BigNumber rounded to significantDigits
significant digits using rounding mode roundingMode
.
If significantDigits
is less than the number of digits necessary to represent the integer
part of the value in normal (fixed-point) notation, then exponential notation is used.
If significantDigits
is omitted, or is null
or undefined
, then the return value is the
same as n.toString()
.
If roundingMode
is omitted or is null
or undefined
, ROUNDING_MODE
is used.
Throws if significantDigits
or roundingMode
is invalid.
x = 45.6
y = new BigNumber(x)
x.toPrecision() // '45.6'
y.toPrecision() // '45.6'
x.toPrecision(1) // '5e+1'
y.toPrecision(1) // '5e+1'
y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP)
y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN)
x.toPrecision(5) // '45.600'
y.toPrecision(5) // '45.600'
Returns a string representing the value of this BigNumber in base base
, or base 10 if base
is omitted or is null
or undefined
.
For bases above 10, and using the default base conversion alphabet (see ALPHABET
), values
from 10 to 35 are represented by a-z (the same as Number.prototype.toString
).
If a base is specified the value is rounded according to the current DECIMAL_PLACES
and
ROUNDING_MODE
settings, otherwise it is not.
If a base is not specified, and this BigNumber has a positive exponent that is equal to or
greater than the positive component of the current EXPONENTIAL_AT
setting, or a negative
exponent equal to or less than the negative component of the setting, then exponential notation
is returned.
If base
is null
or undefined
it is ignored.
Throws if base
is invalid.
x = new BigNumber(750000)
x.toString() // '750000'
BigNumber.config({ EXPONENTIAL_AT: 5 })
x.toString() // '7.5e+5'
y = new BigNumber(362.875)
y.toString(2) // '101101010.111'
y.toString(9) // '442.77777777777777777778'
y.toString(32) // 'ba.s'
BigNumber.config({ DECIMAL_PLACES: 4 });
z = new BigNumber('1.23456789')
z.toString() // '1.23456789'
z.toString(10) // '1.2346'
As toString
, but does not accept a base argument and includes the minus sign for negative
zero.
``ts x = new BigNumber('-0') x.toString() // '0' x.valueOf() // '-0' y = new BigNumber('1.777e+457') y.valueOf() // '1.777e+457'
Static Properties
To aid in debugging, if a BigNumber.DEBUG
property is true
then an error will be thrown
if the BigNumber constructor receives an invalid BigNumber.Value
, or if BigNumber.isBigNumber
receives a BigNumber instance that is malformed.
// No error, and BigNumber NaN is returned.
new BigNumber('blurgh') // 'NaN'
new BigNumber(9, 2) // 'NaN'
BigNumber.DEBUG = true
new BigNumber('blurgh') // '[BigNumber Error] Not a number'
new BigNumber(9, 2) // '[BigNumber Error] Not a base 2 number'
An error will also be thrown if a BigNumber.Value
is of type number with more than 15
significant digits, as calling toString
or valueOf
on such numbers may not result
in the intended value.
console.log(823456789123456.3) // 823456789123456.2
// No error, and the returned BigNumber does not have the same value as the number literal.
new BigNumber(823456789123456.3) // '823456789123456.2'
BigNumber.DEBUG = true
new BigNumber(823456789123456.3)
// '[BigNumber Error] Number primitive has more than 15 significant digits'
Check that a BigNumber instance is well-formed:
x = new BigNumber(10)
BigNumber.DEBUG = false
// Change x.c to an illegitimate value.
x.c = NaN
// No error, as BigNumber.DEBUG is false.
BigNumber.isBigNumber(x) // true
BigNumber.DEBUG = true
BigNumber.isBigNumber(x) // '[BigNumber Error] Invalid BigNumber'
Rounds towards nearest neighbour. If equidistant, rounds towards Infinity.
Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour.
Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity.
Static Methods
Returns a new independent BigNumber constructor with configuration as described by object
, or
with the default configuration if object is null
or undefined
.
Throws if object
is not an object.
BigNumber.config({ DECIMAL_PLACES: 5 })
BN = BigNumber.clone({ DECIMAL_PLACES: 9 })
x = new BigNumber(1)
y = new BN(1)
x.div(3) // 0.33333
y.div(3) // 0.333333333
// BN = BigNumber.clone({ DECIMAL_PLACES: 9 }) is equivalent to:
BN = BigNumber.clone()
BN.config({ DECIMAL_PLACES: 9 })
Configures the settings that apply to this BigNumber constructor.
The configuration object, object
, contains any number of the properties shown in the example
below.
Returns an object with the above properties and their current values.
Throws if object
is not an object, or if an invalid value is assigned to one or more of the
properties.
BigNumber.config({
DECIMAL_PLACES: 40,
ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
EXPONENTIAL_AT: [-10, 20],
RANGE: [-500, 500],
CRYPTO: true,
MODULO_MODE: BigNumber.ROUND_FLOOR,
POW_PRECISION: 80,
FORMAT: {
groupSize: 3,
groupSeparator: ' ',
decimalSeparator: ','
},
ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
});
BigNumber.config().DECIMAL_PLACES // 40
Returns true
if value
is a BigNumber instance, otherwise returns false
.
If BigNumber.DEBUG
is true
, throws if a BigNumber instance is not well-formed.
x = 42
y = new BigNumber(x)
BigNumber.isBigNumber(x) // false
y instanceof BigNumber // true
BigNumber.isBigNumber(y) // true
BN = BigNumber.clone();
z = new BN(x)
z instanceof BigNumber // false
BigNumber.isBigNumber(z) // true
Returns a BigNumber whose value is the maximum of the arguments.
The return value is always exact and unrounded.
x = new BigNumber('3257869345.0378653')
BigNumber.max(4e9, x, '123456789.9') // '4000000000'
arr = [12, '13', new BigNumber(14)]
BigNumber.max.apply(null, arr) // '14'
Returns a BigNumber whose value is the maximum of the arguments.
The return value is always exact and unrounded.
x = new BigNumber('3257869345.0378653')
BigNumber.maximum(4e9, x, '123456789.9') // '4000000000'
arr = [12, '13', new BigNumber(14)]
BigNumber.maximum.apply(null, arr) // '14'
Returns a BigNumber whose value is the minimum of the arguments.
The return value is always exact and unrounded.
x = new BigNumber('3257869345.0378653')
BigNumber.min(4e9, x, '123456789.9') // '123456789.9'
arr = [2, new BigNumber(-14), '-15.9999', -12]
BigNumber.min.apply(null, arr) // '-15.9999'
Returns a BigNumber whose value is the minimum of the arguments.
The return value is always exact and unrounded.
x = new BigNumber('3257869345.0378653')
BigNumber.minimum(4e9, x, '123456789.9') // '123456789.9'
arr = [2, new BigNumber(-14), '-15.9999', -12]
BigNumber.minimum.apply(null, arr) // '-15.9999'
Returns a new BigNumber with a pseudo-random value equal to or greater than 0 and less than 1.
The return value will have decimalPlaces
decimal places, or less if trailing zeros are
produced. If decimalPlaces
is omitted, the current DECIMAL_PLACES
setting will be used.
Depending on the value of this BigNumber constructor's CRYPTO
setting and the support for the
crypto
object in the host environment, the random digits of the return value are generated by
either Math.random
(fastest), crypto.getRandomValues
(Web Cryptography API in recent
browsers) or crypto.randomBytes
(Node.js).
To be able to set CRYPTO
to true when using Node.js, the crypto
object must be available
globally:
global.crypto = require('crypto')
If CRYPTO
is true, i.e. one of the crypto
methods is to be used, the value of a returned
BigNumber should be cryptographically secure and statistically indistinguishable from a random
value.
Throws if decimalPlaces
is invalid.
BigNumber.config({ DECIMAL_PLACES: 10 })
BigNumber.random() // '0.4117936847'
BigNumber.random(20) // '0.78193327636914089009'
Configures the settings that apply to this BigNumber constructor.
The configuration object, object
, contains any number of the properties shown in the example
below.
Returns an object with the above properties and their current values.
Throws if object
is not an object, or if an invalid value is assigned to one or more of the
properties.
BigNumber.set({
DECIMAL_PLACES: 40,
ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
EXPONENTIAL_AT: [-10, 20],
RANGE: [-500, 500],
CRYPTO: true,
MODULO_MODE: BigNumber.ROUND_FLOOR,
POW_PRECISION: 80,
FORMAT: {
groupSize: 3,
groupSeparator: ' ',
decimalSeparator: ','
},
ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
});
BigNumber.set().DECIMAL_PLACES // 40
Returns a BigNumber whose value is the sum of the arguments.
The return value is always exact and unrounded.
x = new BigNumber('3257869345.0378653')
BigNumber.sum(4e9, x, '123456789.9') // '7381326134.9378653'
arr = [2, new BigNumber(14), '15.9999', 12]
BigNumber.sum.apply(null, arr) // '43.9999'